In Vivo Forces in the Plantar Fascia During the Stance Phase of Gait

Author:

Ward Erin D.1,Smith Kevin M.2,Cocheba Jay R.3,Patterson Patrick E.4,Phillips Robert D.5

Affiliation:

1. Central Iowa Foot Clinic, PC, Perry.

2. Department of Podiatric Medicine, College of Podiatric Medicine, Des Moines University, Des Moines, IA.

3. Broadlawns Medical Center, Des Moines, IA.

4. Department of Industrial and Biomedical Engineering, Black Engineering, Iowa State University, Ames.

5. Podiatry Section, Veterans Affairs Medical Center, Coatesville, PA.

Abstract

Plantar fasciotomies have become commonplace in podiatric and orthopedic medicine for the treatment of plantar fasciitis. However, several complications have been associated with plantar fascial release. It has been speculated that the cause of these complications is excessive release of the plantar fascia. The aim of this project was to determine whether the amount of fascia released, from medial to lateral, causes a significant increase in force in the remaining fascia. A dynamic loading system was developed that allowed a cadaveric specimen to replicate the stance phase of gait. The system was capable of applying appropriate muscle forces to the extrinsic tendons on the foot and replicating the in vivo timing of the muscle activity while applying force to the tibia and fibula from heel strike to toe-off. As the plantar fascia was sequentially released from medial to lateral, from intact to 33% released to 66% released, the real-time force and the duration of force in the remaining fascia increased significantly, and the force was shifted later in propulsion. In addition, the subtalar joint was unable to resupinate as the amount of fascia release increased, indicating a direct relationship between the medial band of the plantar fascia and resupination of the subtalar joint during late midstance and propulsion. (J Am Podiatr Med Assoc 93(6): 429-442, 2003)

Publisher

American Podiatric Medical Association

Subject

General Medicine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3