Effect of Shoe Flexibility on Plantar Loading in Children Learning to Walk

Author:

Hillstrom Howard J.12,Buckland Melanie A.1,Slevin Corinne M.1,Hafer Jocelyn F.1,Root Leon M.1,Backus Sherry I.1,Kraszewski Andrew P.1,Whitney Kendrick A.2,Scher David M.1,Song Jinsup2,Furmato James2,Choate Cherri S.3,Scherer Paul R.3

Affiliation:

1. Leon Root, M.D. Motion Analysis Laboratory, Rehabilitation Department, Hospital for Special Surgery, New York, NY.

2. Temple University School of Podiatric Medicine, Gait Study Center, Temple University, Philadelphia, PA.

3. Department of Applied Biomechanics, California College of Podiatric Medicine, Samuel Merritt University, Oakland, CA.

Abstract

Background: In a previous pilot study of “cruisers” (nonindependent ambulation), “early walkers” (independent ambulation for 0–5 months), and “experienced walkers” (independent ambulation for 6–12 months), developmental age significantly affected the children’s stability when walking and performing functional activities. We sought to examine how shoe structural characteristics affect plantar pressure distribution in early walkers. Methods: Torsional flexibility was evaluated in four shoe designs (UltraFlex, MedFlex, LowFlex, and Stiff based on decreasing relative flexibility) with a structural testing machine. Plantar pressures were recorded in 25 early walkers while barefoot and shod at self-selected walking speeds. Peak pressure was calculated over ten masked regions for the barefoot and shod conditions. Results: Torsional flexibility, the angular rotation divided by the applied moment about the long axis of the shoe, was different across the four shoe designs. As expected, UltraFlex was the most flexible and Stiff was the least flexible. As applied moment increased, torsional flexibility decreased in all footwear. When evaluating early walkers during gait, peak pressure was significantly different across shoe conditions for all of the masked regions. The stiffest shoe had the lowest peak pressures and the most flexible shoe had the highest. Conclusions: It is likely that increased shoe flexibility promoted greater plantar loading. Plantar pressures while wearing the most flexible shoe are similar to those while barefoot. This mechanical feedback may enhance proprioception, which is a desirable attribute for children learning to walk. (J Am Podiatr Med Assoc 103(4): 297–305, 2013)

Publisher

American Podiatric Medical Association

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3