Affiliation:
1. School of Human Kinetics, University of Ottawa, Ottawa, Ontario.
2. Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China.
Abstract
Background: We investigate kinematic adaptation and muscle activities in the trunk and lower extremities of healthy subjects during treadmill walking in negative-heeled sports shoes versus normal sports shoes.
Methods: Thirteen healthy female university students participated in the study. We analyzed sagittal-movement kinematics and electromyographic findings from the erector spinae, rectus abdominus, rectus femoris, biceps femoris, tibialis anterior, and lateral gastrocnemius muscles of the dominant side in two shod conditions.
Results: Negative-heeled gait is characterized by faster cadence, shorter stride length, increased maximal extension angles in the trunk and hip, increased flexion angle in the knee, larger dorsiflexion in the stance phase, and a larger range of motion of the ankle joint. Negative-heeled gait resulted in a significantly larger integrated electromyographic value, a longer duration of electromyographic activity, and a higher mean amplitude of electromyographic activity in the tibialis anterior, lateral gastrocnemius, and biceps femoris muscles.
Conclusions: Negative-heeled gait compared with normal gait places a higher physiologic demand on the tibialis anterior, lateral gastrocnemius, and biceps femoris muscles when walking on a level surface. Thus, negative-heeled shoes could be of value if used in an exercise rehabilitation or training program where inclined walking is not available owing to a flat terrain. (J Am Podiatr Med Assoc 97(6): 447–456, 2007)
Publisher
American Podiatric Medical Association
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献