Biomechanical Evaluation of Syndesmotic Screw Design via Finite Element Analysis and Taguchi's Method

Author:

Er Mehmet Serhan1,Verim Ozgur2,Eroglu Mehmet3,Altinel Levent1,Gokce Bariş4,Tasgetiren Suleyman5

Affiliation:

1. Department of Orthopedics and Traumatology, University of Akdeniz, School of Medicine, Antalya, Turkey.

2. Department of Mechanical Engineering, Faculty of Technology, University of Afyon Kocatepe, Afyonkarahisar, Turkey.

3. Department of Orthopedics and Traumatology, University of Afyon Kocatepe, School of Medicine, Afyonkarahisar, Turkey.

4. Department of Mechatronics Engineering, Faculty of Technology, University of Afyon Kocatepe, Afyonkarahisar, Turkey.

5. Department of Biomedical Engineering, Faculty of Engineering, University of Afyon Kocatepe, Afyonkarahisar, Turkey.

Abstract

Background Screw fixation of syndesmotic injuries facilitates ligament healing and restoration of ankle stability, but failure of the screw might threaten the success of the treatment. Screw design parameters, such as outer diameter, inner diameter, thread pitch, leading edge radius, trailing edge radius, leading edge angle, and trailing edge angle, might have effects on the stresses that occur in the screws. This is the first study, to our knowledge, to investigate which geometric screw parameters play key roles in stresses that occur in screws used for syndesmotic fixation. Methods A three-dimensional finite element model of an ankle was reconstructed. Four different types of titanium screws—4.5-mm malleolar, 4-mm cancellous, 4-mm machine, and 3.5-mm cortical—were placed on this model. Physiologic load was applied to evaluate the stress in the screw. Then the contribution of each design factor to stress in the screws was analyzed systematically by Taguchi's robust design method. Results The maximum equivalent ductile failure (von Mises equivalent stress) value was found in the 4-mm cancellous screw (402 MPa). Taguchi's analysis showed that the descending order of contribution of the design factors to stress emerging on the screw is inner diameter, leading edge angle, thread pitch, outer diameter, and trailing edge angle. Conclusions Stress that occurs in syndesmotic screws is closely related to their geometry and dimensions. According to the results, a 3.5-mm cortical screw with the ideal screw design regarding optimal parameters to resist against stresses in the syndesmosis seems more reasonable to choose in syndesmotic fixation.

Publisher

American Podiatric Medical Association

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3