Morphological Changes in Neural Progenitors Derived from Human Induced Pluripotent Stem Cells and Transplanted into the Striatum of a Parkinson's Disease Rat Model

Author:

Voronkov Dmitry N.ORCID,Stavrovskaya Alla V.ORCID,Lebedeva Olga S.ORCID,Li WenORCID,Olshansky Artem S.ORCID,Gushchina Anastasia S.ORCID,Kapkaeva Marina R.ORCID,Bogomazova Alexandra N.ORCID,Lagarkova Maria A.ORCID,Illarioshkin Sergey N.ORCID

Abstract

Introduction. Development of cell therapy for Parkinson's disease (PD) requires protocols based on transplantation of neurons derived from human induced pluripotent stem cells (hiPSCs) into the damaged area of the brain. Objective: to characterize neurons transplanted into a rat brain and evaluate neural transplantation efficacy using a PD animal model. Materials and methods. Neurons derived from hiPSCs (IPSRG4S line) were transplanted into the striatum of rats after intranigral injection of 6-hydroxydopamine (6-OHDA). Immunostaining was performed to identify expression of glial and neuronal markers in the transplanted cells within 224 weeks posttransplant. Results. 4 weeks posttransplant we observed increased expression of mature neuron markers, decreased expression of neural progenitor markers, and primary pro-inflammatory response of glial cells in the graft. Differentiation and maturation of neuronal cells in the graft lasted over 3 months. At 3 and 6 months we detected 2 graft zones: one mainly contained the transplanted neurons and the other human astrocytes. We detected human neurites in the corpus callosum and surrounding striatal tissue and large human tyrosine hydroxylase-expressing neurons in the graft. Conclusion. With graft's morphological characteristics identified at different periods we can better understand pathophysiology and temporal patterns of new dopaminergic neurons integration and striatal reinnervation in a rat PD model in the long-term postoperative period.

Publisher

Research Center of Neurology

Subject

Neurology (clinical),Neurology,Cognitive Neuroscience,Neuroscience (miscellaneous),Cellular and Molecular Neuroscience

Reference24 articles.

1. Pluripotent Stem Cells for Modelling and Cell Therapy of Parkinson’s Disease

2. Modeling Alzheimer’s disease with iPSC-derived brain cells

3. Personalized iPSC-Derived Dopamine Progenitor Cells for Parkinson’s Disease

4. Wu R., Luo S., Yang H., Transplantation of neural progenitor cells generated from human urine epithelial cell-derived induced pluripotent stem cells improves neurological functions in rats with stroke. Dis. Med. 2020;29(156):53–64.

5. Partial Reconstruction of the Nigrostriatal Circuit along a Preformed Molecular Guidance Pathway

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3