Pain estimation after coronary angiography based on vital signs by using artificial neural networks

Author:

Heravi Mohammad Amin Younessi,Gazerani Akram,Yaghubi Mohsen S.,Amini Zakiehe A.,Salimi Parisa S.,Falahi Zahra Z.

Abstract

Background: Coronary angiography is gold standard method to diagnose coronary arteries diseases. The aim of this study was to estimate pain after coronary angiography based on vital signs for determining best position by using artificial neural networks ANN. Methodology: This study used a database containing 86 subjects that refer to angiography center. For each subject Vital signs were measured that included blood pressure, percent of blood oxygen saturation, heart rate, respiratory rate and temperature. The Numeric Rating scale (NRS) was used to determine pain intensity. The vital signs were the inputs and the pain value was the corresponding output. These data were applied to train the ANN in the learning process. The model was implemented in MATLAB software. The results of pain estimation were compared with the results of NRS method and the error rate was calculated. Results: The absolute error and error percentage between NRS method and the present method were 5.41 ± 2.63 mmHg, 4.09 ± 1.59%. The results indicated that the pain measurement by NRS method and pain value predicted with trained ANN differ by only less than 11%. It is obvious that the neural network prediction fit properly to the NRS results. Conclusion: The results of proposed method were closely in agreement with the results of the NRS. so this method can be suggested for reliving the pain and determining the best patient's position after the angiography procedure. Key words: Artificial neural network; Coronary angiography; Pain Citation: Heravi MAY, Yaghubi MS, Amini ZA, Salimi PS, Falahi ZZ, Gazerani AG. Pain estimation after coronary angiography based on vital signs by using artificial neural networks. Anaesth. pain intensive care 2021;25(1):27–32. DOI: 10.35975/apic.v25i1.1433 Received: 21 November 2020, Reviewed: 2 December 2020, Accepted: 12 December 2020

Publisher

Aga Khan University Hospital

Subject

Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3