Detection of Lung Cancer Malignancy Types on CT-Scan Using the Convolutional Neural Network Method at PHC Hospital Surabaya

Author:

Kurniawan Kholilul Rohman,Setyati Endang,Chandra Francisca Haryanti

Abstract

There are many uses for digital image processing, ranging from tumor and cancer detection in the body to reading blood cells. The rate of lung cancer represents about 13.27% of the total cancer cases, and this shows that lung cancer is the main type of disease in men. Lung cancer is one of the most dangerous and life-threatening diseases in the world. In Indonesia, lung cancer is more often detected when patients are at an advanced stage. Therefore, in this paper, we applied Deep Learning to solve a lung cancer malignant detection system; it is used to detect and classify nodule areas. So that lung cancer detection can be obtained with accurate results. This paper explains the working system for detecting lung cancer malignancies using a Convolutional Neural Network (CNN) and the model architecture for training the dataset using the EfficientNet model. This study collected 800 lung CT images from PHC Surabaya Hospital in DICOM format. A total of 13 layers with EfficientNet architecture and classification layers for each type of cancer class have been used in the model. The experimental results of the model achieved satisfactory results with an accuracy of 99.46%, with a maximum epoch of 30 and a mini-batch size of 128.

Publisher

Universitas Bhayangkara Surabaya

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3