Influence of Different Crack Factors on Acoustic Wave Signals Using Orthogonal Analysis

Author:

Wang Xianghong1,Liu Jun1,Luo Zhimin1,Hu Hongwei1

Affiliation:

1. Changsha University of Science & Technology

Abstract

The existence of cracks in key components of engineering equipment is a huge threat to the safe operation of the equipment. The influence of four factors (length, location, orientation, and width of the crack) on the attenuation characteristic of signal propagation is studied through simulation and experiment. The orthogonal experimental design is applied to design the simulation scheme, and the signal affected by the four factors is simulated by the finite-difference time-domain method. The degree of influence of the different factors is evaluated by conducting an analysis of range and an analysis of variance. The results show that the influence of crack length and location on signal relative attenuation is more remarkable according to the significance level α = 0.05, followed by crack orientation and crack width. The attenuation trend in the experimental results is similar to the simulation. Therefore, the longer the crack length is, the easier it is to be detected by the acoustic wave technique, while the effect of crack orientation and crack width on identifying cracks is limited. The study successfully establishes the relationship between signal parameters and crack factors and offers a theoretical foundation for evaluating the status of cracks in key components.

Funder

Natural Science Foundation of Hunan Province

Education Department of Hunan Province

Publisher

The American Society for Nondestructive Testing, Inc.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improvement of coalbed methane recovery rate by carbon dioxide phase transition blast fracturing;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2022-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3