Identification of Water Pipe Material Based on Stress Wave Propagation: Numerical Investigations

Author:

Aminpour Peyman,Sjoblom Kurt,Bartoli Ivan

Abstract

Water utilities have been struggling to replace their aging infrastructure and have increasingly faced crisis related to the presence of lead pipelines that can affect the health of many communities across the United States. Replacement of lead pipelines is a daunting task because often their location is unknown and technologies to discover such hazardous water lines are unreliable. Driven by these needs, the researchers have explored nondestructive evaluation (NDE) strategies based on ultrasonic stress waves as a tool to discover lead pipelines. While such approaches present great potential, the complexity of wave propagation must be understood to develop an effective NDE strategy. This paper discusses the theoretical foundation and complexities of this approach by showing how stress wave propagation is quite different in pipelines of different materials such as lead, steel, copper, and PVC, which are the common materials used to provide drinking water to households. In particular, different stress wave speeds allow for the identification of different pipeline materials. The simulations presented in this study suggest how ultrasonic stress waves could be deployed in the coming years to help discover and replace lead pipelines.

Publisher

The American Society for Nondestructive Testing, Inc.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3