Laser-Induced Thermoelastic Wave Technique to Evaluate Hygrothermal Aging in CFRP Composites

Author:

Bagale Nilesh C1,Bhat M R1

Affiliation:

1. Indian Institute of Science

Abstract

The interaction of heat and moisture with fiber-reinforced polymer composites over a long duration is known to cause physical and mechanical degradation. In this paper, an attempt was made to evaluate physical and mechanical changes in carbon fiber–reinforced polymer (CFRP) by an unconventional nondestructive approach before and after varied duration of exposures to hygrothermal (HT) treatment at an elevated temperature (80 °C/353 K) up to 800 h. As a novel approach, laser-induced thermoelastic waves were utilized for characterization of the material. Wave characteristics, such as wave amplitude and velocity of propagation, were studied over different duration exposures of HT treatment to detect and quantify HT-induced property changes in the material. Results show that the aging effect attenuated the wave to a factor of 2.75 and significantly reduced the velocity of wave propagation by 20% compared to that of the pristine material, revealing the degradation in the material caused by HT exposure. The proposed methodology has the potential to monitor the health of fiber-reinforced polymer composite structures that have undergone hygrothermal aging.

Publisher

The American Society for Nondestructive Testing, Inc.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3