Nondestructive Analysis On 4D-Printed Hygroscopic Actuators Through Optical Flow-Based Displacement Measurements

Author:

Bianconi Fabio,Filippucci Marco,Pelliccia Giulia,Rossi Gianluca,Tocci Tommaso,Tribbiani Giulio,Correa David

Abstract

The many advantages of additive manufacturing are particularly noticeable in the fabrication of 4D-printed actuators. Through the selection of specific printing properties and materials, hygroscopic wood polymer composites (WPCs) can be produced and their reaction to humidity can be preprogrammed to achieve the greatest deformations in the shortest time. This responsive behavior makes 4D-printed WPCs suitable for architectural applications, where they can act as passive airflow controllers to improve hygrometric conditions in indoor environments. Image analysis methods have been proven to be reliable to select the best combinations of materials and properties for hygroscopic WPCs but, in some cases, they provide only information on the curvature angles and the instrumentation and software can be expensive. This paper presents an optical flow method for tracking the displacements through a free and open-source software. Starting from a time-lapse video of the sample immersed in water, the analysis returns a matrix composed of the 3D displacement values for each pixel in consecutive frames and the velocity of the displacement, with their visual representation. Such image analysis techniques proved to be suitable to assess the different hygro-responsive behavior under water of 4D-printed WPCs through low-cost equipment without altering their configuration.

Publisher

The American Society for Nondestructive Testing, Inc.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3