Nondestructive Evaluation of Coating Defects and Uniformity Based on Terahertz Time-Domain Spectroscopy
Author:
Liu Zenghua,Man Runxin,Wang Kexin,Wu Yuheng
Abstract
Structural coatings are widely used because of their excellent mechanical and thermal properties. To evaluate defects and uniformity in coatings, both qualitatively and quantitatively, a terahertz time-domain spectroscopy (THz-TDS) detection technique is proposed. The thermal barrier coating is selected as a typical single-layer coating structure for quantitative defect detection. A wavelet noise reduction method is used on the acquired raw signals to eliminate noise while retaining detailed information. The peak value of the preprocessed signal is used as a feature parameter for imaging, and the automatic binarization threshold segmentation technique is used to describe the defects quantitatively. The automotive coating is selected as a typical multilayer coating structure for uniformity detection. The time-frequency characteristics of a strongly superimposed signal are analyzed; the peak-to-peak value is used as a feature parameter for imaging, and the peak-to-peak 3D imaging is then used to characterize the coating uniformity, enabling fast and intuitive acquisition of the coating state. The statistical characteristics of the standard deviation and range are used to evaluate the uniformity of each layer of the automotive coating. The results show that the uniformity of the clean coating is optimal. The results of a subsequent thickness inspection using an eddy current gauge are consistent with those of the terahertz technique. The results demonstrate that THz-TDS can effectively detect defects and uniformity in coatings.
Funder
Beijing Municipal Natural Science Foundation Key Technologies Research and Development Program
Publisher
The American Society for Nondestructive Testing, Inc.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Reference29 articles.
1. Chen, H.-L.R., B. Zhang, M.A. Alvin, and Y. Lin, 2012, “Ultrasonic Detection of Delamination and Material Characterization of Thermal Barrier Coatings,” J Therm Spray Technol, Vol. 21, pp. 1184–1194, https://doi.org/10.1007/s11666-012-9811-9 2. Chen, Z., H. Huang, K. Zhao, W. Jia, and L. Fang, 2018, “Influence of Inhomogeneous Thermally Grown Oxide Thickness on Residual Stress Distribution in Thermal Barrier Coating System,” Ceram Int, Vol. 44, pp.16937–16946, https://doi.org/10.1016/j.ceramint.2018.06.134 3. Choi, C.J., J.K. Lee, L.K. Kwac, and J.Y. Kim, 2010, “Development of Advance Thermal Barrier Coating in Gas Turbine,” Adv Mater Res, Vol.123–125, pp. 459–462, https://doi.org/10.4028/www.scientific.net/AMR.123-125.459 4. Doleker, K.M., Y. Ozgurluk, Y. Kahraman, and A.C. Karaoglanli, 2021, “Oxidation and Hot Corrosion Resistance of HVOF/EB-PVD Thermal Barrier Coating System,” Surf Coat Technol, Vol. 409, https://doi.org/10.1016/j.surfcoat.2021.126862 5. Gomez, C.J.J., R. Naraparaju, P. Mechnich, K. Kelm, U. Schulz, and C.V. Ramana, 2020, “Effects of Yttria Content on the CMAS Infiltration Resistance of Yttria Stabilized Thermal Barrier Coatings System,” J Mater Sci, Vol. 43, pp. 74–83, https://doi.org/10.1016/j.jmst.2019.09.039
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|