Comparative Study of Destructive, Nondestructive, and Numerical Methods on the Determination of Moisture-Dependent Shear Moduli of Calabrian Pine

Author:

Aydin MuratORCID,Huseyin HasanORCID

Abstract

In this study, the moisture-dependent shear moduli of Calabrian pine were determined by a 45° off-axis compression test, and ultrasonic measurement were performed to determine the effectiveness of the nondestructive method for shear modulus prediction. Also, finite element modeling and analysis was performed to compare the results with static stress-strain curves within the linear elastic region. Ultrasonic transverse wave velocities in longitudinal-radial (LR), longitudinal-tangential (LT), and radial-tangential (RT) planes decreased from 1447 to 1368, 1342 to 1264, and 682 to 642 m/s with an increase in relative humidity (RH) from 45% to 85%, respectively. Static and dynamic shear modulus in LR, LT, and RT planes decreased from 1054 to 933, 905 to 825, and 230 to 210 N/mm2, and 1141 to 1065, 982 to 909, and 254 to 235 N/mm2 when relative humidity increased from 45% to 85%, respectively. The influence of the moisture content on the transverse velocity and moduli was statistically significant. The coefficient of determination between the dynamic and static shear moduli ranged from 0.77 to 0.96.

Funder

Düzce Üniversitesi

Publisher

The American Society for Nondestructive Testing, Inc.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3