Author:
Wang Yan,Chen Lijun,Wang Na,Gu Jie
Abstract
In order to improve the accuracy of damage source identification in concrete based on acoustic emission testing (AE) and neural networks, and locating and repairing the damage in a practical roller compacted concrete (RCC) dam, a multilevel AE processing platform based on wavelet energy spectrum analysis, principal component analysis (PCA), and a neural network is proposed. Two data sets of 15 basic AE parameters and 23 AE parameters added on the basis of the 15 basic AE parameters were selected as the input vectors of a basic parameter neural network and a wavelet neural network, respectively. Taking the measured tensile data of an RCC prism sample as an example, the results show that compared with the basic parameter neural network, the wavelet neural network achieves a higher accuracy and faster damage source identification, with an average recognition rate of 8.2% and training speed of about 33%.
Publisher
The American Society for Nondestructive Testing, Inc.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献