SMOTE and Nearmiss Methods for Disease Classification with Unbalanced Data

Author:

Alamsyah Anas Rulloh Budi,Anisa Salsabila Rahma,Belinda Nadira Sri,Setiawan Adi

Abstract

Unbalanced data are often encountered in practice. They complicate the search for a model suitable for classification. This is because the number of individuals who have a history of a disease is less than the number of individuals who do not. We analyse the IFLS 5 data on medical history of a set of patients. We split the dataset in the proportion 80:20 to training and test subsets. Of course, both datasets are unbalanced, with only a small minority of patients who had a stroke. We apply the SMOTE and Nearmiss methods and evaluate the rate of correct classification. After being treated using the two methods, the training data was transformed into balanced data. The classification process is carried out to test the comparison of the effectiveness of the two methods in solving the problem of unbalanced data. Based on the results obtained, it can be concluded that the Nearmiss method is better than SMOTE in balancing the data. It was obtained by comparing several measures such as accuracy, F-score, Kappa, sensitivity, and specificity on the SMOTE and Nearmiss methods.

Publisher

Politeknik Statistika STIS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3