Affiliation:
1. Almazov National Medical Research Centre
2. Tomsk Polytechnic University
Abstract
Background. Biodegradable polymers are one of the most promising groups of materials suitable for creating tissue-engineered scaffolds. The high interest in biopolymers is associated with the possibility of creating scaffolds with desired properties, through the use of mixtures and copolymers. The determination of the key parameters of biocompatibility is the basic purpose for testing created materials.Objective. To perform the comparative in vitro study of biocompatibility properties of biopolymer scaffolds produced using polycaprolactone, polylactic acid, their mixtures and copolymers by electrospinning technology.Design and methods. The adhesion properties and cytotoxicity of scaffolds made from polycaprolactone, polylactic acid, copolymer of L- and D-isoforms of lactic acid, their mixtures and co-polymers with the addition of polyglycolic acid were investigated after scaffolds co-cultivation with human mesenchyme stem cells (MSC).Results. The largest number of spread spindle-shaped MSCs was on the surface of polymers containing polyglycolic acid. Besides, the cells on the surface of the copolymer with polyglycolic acid had the morphology closest to the control. The lowest number of living cells was found on the surface of polylactic acid scaffolds, and the highest on the surface of samples from of polycaprolactone and polylactic acid blend.Conclusion. Thus, all tested polymers had good adhesion properties in experiments with human mesenchyme stem cells were possessed by biodegradable polymers with the addition of polyglycolic acid.
Publisher
Arterialnaya Gipertenziya
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献