Omicron variants bind to human angiotensin-converting enzyme 2 (ACE2) much stronger due to higher number of charged-charged interactions

Author:

KALYONCU Sibel1ORCID

Affiliation:

1. Izmir Biomedicine and Genome Center

Abstract

Since the start of COVID-19 pandemic, several mutant variants of SARS-CoV-2 have emerged with different virulence and transmissibility patterns. Some of these variants have been labeled as variants of concern (VOC). There are mainly five strain clades with VOC status: Alpha, Beta, Gamma, Delta, and Omicron. Omicron sub-variants have been currently in circulation around the world, and they show faster transmissibility and lower virulence compared to others. Receptor binding domain (RBD) of SARS-CoV-2 spike protein is the region where it binds to human angiotensin-converting enzyme 2 (hACE2) on the host cell. Mutations on RBD might have direct or indirect effects on differential disease patterns of these variants. In this study, we analyzed sequence and structures of SARS-CoV-2 variants’ RBD domains and documented their predicted affinities and contact interactions with hACE2. We found that Omicron sub-variants have much higher hACE2 affinities compared to other VOC strains. To understand reasons behind this, we checked biophysical characteristics of RBD-hACE2 contacts. Surprisingly, number of charged-charged interactions of Omicron sub-variants were on average 4-fold higher. These higher charged residue mutations on epitope region of Omicron sub-variants leading to stronger affinity for hACE2 might shed light onto why Omicron has less severe disease symptoms.

Publisher

Field Crops Central Research Institute

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3