Affiliation:
1. Department of Biology and Environment, Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
2. Department of Soil Science, Centre of Chemistry, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
3. Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
4. Department of Biology, Lund University, 22362 Lund, Sweden
Abstract
UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE) were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.
Subject
General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献