miR-126 and miR-126*: New Players in Cancer

Author:

Meister Jeannette1,Schmidt Mirko H. H.1

Affiliation:

1. Molecular Signal Transduction, Institute of Neurology (Edinger Institute), Johann Wolfgang Goethe University School of Medicine, Frankfurt am Main, Germany

Abstract

Cancer progression is characterized by autarky in growth signals, insensitivity to growth-restrictive signals, evasion of apoptosis, a limitless potential to replicate, sustained angiogenesis, and tissue invasion, including metastasis. The regulation of these cellular processes relies on a fine-tuned control of molecular signal cascades. In recent years, short noncoding RNAs termed microRNAs (miRNAs) have been described as a novel class of molecular regulators. These affect various signaling cascades during the progression of neoplastic diseases by the regulation of gene expression on the post-transcriptional level. The novel endothelial cell–derived secreted protein epidermal growth factor–like domain 7 (EGFL7) has been suggested to control vascular tubulogenesis. Further, the two biologically active miRNAs miR-126 and its complement miR-126*, which are encoded by intron 7 of the egfl7 gene, have been described to mediate vascular functions. Knock-out studies in zebrafish and mice suggested a major role of miR-126 in angiogenesis and vascular integrity, which was mediated by the repression of inhibitors of VEGF-induced proliferation in endothelial cells. Recent studies revealed the distribution and function of miR-126 and miR-126* in various types of cancer, and assigned a role to both miRNAs as suppressors of tumor formation. Indeed, miR-126 and miR-126* have been reported to impair cancer progression through signaling pathways that control tumor cell proliferation, migration, invasion, and survival. Conversely, miR-126 and miR-126* may have a supportive role in the progression of cancer as well, which might be mediated by the promotion of blood vessel growth and inflammation. In this work, we will summarize the current knowledge on functions of miR-126/miR-126* that are relevant for cancer formation, and we will discuss their potential clinical use as predictive markers of survival and application as novel therapeutic targets for the treatment of neoplastic diseases.

Funder

German Research Foundation DFG

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3