Molecular Circuits of Resolution in the Eye

Author:

Liclican Elvira L.1,Gronert Karsten1

Affiliation:

1. Vision Science Program, School of Optometry, University of California, Berkeley, CA, USA

Abstract

Lipid autacoids have well-established key roles in physiology and pathophysiology. Eicosanoids derived from ω-6 arachidonic acid (AA) have long been recognized for their roles in cardiovascular and renal functions, and vascular tone, as well as regulating inflammatory and immune functions. It is now appreciated that AA is a substrate for generating lipid mediators with anti-inflammatory and proresolving properties, namely lipoxins (i.e., LXA4), which are an integral component for the successful execution of beneficial and essential acute inflammatory responses. In addition to AA, the ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also serve as substrates to generate potent and protective autacoids, such as resolvins and neuroprotectin (i.e., NPD1), respectively. These ω-3–derived signals may mediate the remarkable protective action of essential dietary ω-3 PUFAs. Formation and bioactivity of lipid mediators in the eye are relatively unexplored and of considerable interest, as the eye contains highly specialized tissues, including the transparent avascular and immune-privileged cornea, and the neuro-retina. A rapidly emerging field has identified key biosynthetic enzymes, receptors, and temporally defined endogenous formation of ω-3– and ω-6–derived protective lipid circuits in the eye. Protective endogenous roles of LXA4 and NPD1 have been established utilizing lipidomic analysis, knockout mice, and pharmacological, genetic, and dietary manipulation, providing compelling evidence that these intrinsic lipid autacoid circuits play essential roles in restraining inflammation, promoting wound healing, inhibiting pathological angiogenesis, and providing neuroprotection in the delicate visual axis.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3