Time-Space Translation: A Developmental Principle

Author:

Durston A. J.1,Jansen H. J.1,Wacker S. A.2

Affiliation:

1. Sylvius Laboratory, Leiden, The Netherlands

2. Institute of Biochemistry, University of Ulm, Germany

Abstract

We review a recently discovered developmental mechanism. Anterior-posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early nonorganizer mesoderm (NOM) and the Spemann organizer (SO). The timer is characterized by temporally collinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the NOM) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilized by signals from the SO. The NOM and the SO undergo timed interactions due to morphogenetic movements during gastrulation, which lead to the formation of an anterior-posterior axial pattern and stable Hox gene expression. When separated from each other, neither the NOM nor the SO is able to induce anterior-posterior pattern formation of the trunk. We present a model describing that the NOM acquires transiently stable hox codes and spatial collinearity, and that morphogenetic movements then continually bring new cells from the NOM within the range of SO signals that cause transfer of the mesodermal pattern to a stable pattern in neurectoderm and, thereby, create patterned axial structures. In doing so, the age of the NOM, but not the age of the SO, defines positional values along the anterior-posterior axis. We postulate that the temporal information from the NOM is linked to mesodermal Hox expression. The role of the SO for trunk patterning turns out to be the induction of neural tissue as prerequisite for neural hox patterning. Apparently, development of a stable anterior-posterior pattern requires neural hox patterning. We believe that this mechanism represents a developmental principle.

Funder

Ministry of Science and Technological Development of the Republic of Serbia

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3