Differential Micronuclei Induction in Human Lymphocyte Cultures by Imidacloprid in the Presence of Potassium Nitrate

Author:

Stivaktakis Polychronis1,Vlastos Dimitris1,Giannakopoulos Evangelos1,Matthopoulos Demetrious P.1

Affiliation:

1. Department of Environmental and Natural Resources Management, University of Ioannina, Agrinio, Greece

Abstract

Humans are exposed to pesticides as a consequence of their application in farming or their persistence in a variety of media, including food, water, air, soil, plants, animals, and smoke. The interaction of pesticides with environmental factors may result in the alteration of their physicochemical properties. Square wave cathodic stripping voltammetry (SW-CSV), a technique that simulates electrodynamically the cellular membrane, is used to investigate whether the presence of potassium nitrate (KNO3) in the culture medium interferes with the genotoxic behavior of imidacloprid. The cytokinesis block micronuclei (CBMN) method is used to evaluate imidacloprid's genotoxicity in the absence or presence of KNO3in the culture medium and, as a consequence, its adsorption by lymphocytes. Comparing micronuclei (MN) frequencies in control and imidacloprid-treated blood cell cultures, statistically significant differences were not detected. KNO3did not induce MN frequencies compared to control. Statistically significant differences in MN frequencies were observed when blood cell cultures were treated with imidacloprid in the presence of increasing concentrations of KNO3. SW-CSV revealed that by increasing KNO3molarity, imidacloprid's concentration in the culture medium decreased in parallel. This finding indicates that imidacloprid is adsorbed by cellular membranes. The present study suggests a novel role of a harmless environmental factor, such as KNO3, on the genotoxic behavior of a pesticide, such as imidacloprid. KNO3rendered imidacloprid permeable to lymphocytes, resulting in elevated MN frequencies.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3