Fluorescence and Spectral Imaging

Author:

DaCosta Ralph S.1,Wilson Brian C.1,Marcon Norman E.2

Affiliation:

1. Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada

2. St. Michael's Hospital, Center for Therapeutic Endoscopy and Endoscopic Oncology, 16-062 Victoria Wing, 30 Bond Street, Toronto, Ontario, M5B 1W8, Canada

Abstract

Early identification of dysplasia remains a critical goal for diagnostic endoscopy since early discovery directly improves patient survival because it allows endoscopic or surgical intervention with disease localized without lymph node involvement. Clinical studies have successfully used tissue autofluorescence with conventional white light endoscopy and biopsy for detecting adenomatous colonic polyps, differentiating benign hyperplastic from adenomas with acceptable sensitivity and specificity. In Barrett's esophagus, the detection of dysplasia remains problematic because of background inflammation, whereas in the squamous esophagus, autofluorescence imaging appears to be more dependable. Point fluorescence spectroscopy, although playing a crucial role in the pioneering mechanistic development of fluorescence endoscopic imaging, does not seem to have a current function in endoscopy because of its nontargeted sampling and suboptimal sensitivity and specificity. Other point spectroscopic modalities, such as Raman spectroscopy and elastic light scattering, continue to be evaluated in clinical studies, but still suffer the significant disadvantages of being random and nonimaging. A recent addition to the fluorescence endoscopic imaging arsenal is the use of confocal fluorescence endomicroscopy, which provides real-time optical biopsy for the first time. To improve detection of dysplasia in the gastrointestinal tract, a new and exciting development has been the use of exogenous fluorescence contrast probes that specifically target a variety of disease-related cellular biomarkers using conventional fluorescent dyes and novel potent fluorescent nanocrystals (i.e., quantum dots). This is an area of great promise, but still in its infancy, and preclinical studies are currently under way.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluorescent probe applications and prospects in gastrointestinal cancer: A bibliometric analysis;European Journal of Surgical Oncology;2024-10

2. Convolutional Neural Networks for The Detection of Skin Diseases;2023 International Conference on Emerging Research in Computational Science (ICERCS);2023-12-07

3. Fluorescence lifetime imaging microscopy (FLIM) of human middle ear tissue samples;Translational Biophotonics: Diagnostics and Therapeutics III;2023-08-11

4. Efficacy of Deep Learning Approach for Automated Melanoma Detection;2021 International Conference on Decision Aid Sciences and Application (DASA);2021-12-07

5. Deep Learning-Based System for Automatic Melanoma Detection;IEEE Access;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3