Air Pollution Distribution Patterns in the San Bernardino Mountains of Southern California: a 40-Year Perspective

Author:

Bytnerowicz Andrzej1,Arbaugh Michael1,Schilling Susan1,Fraczek Witold2,Alexander Diane2,Dawson Philip2

Affiliation:

1. USDA Forest Service, Pacific Southwest Research Station, Riverside, CA, USA

2. Environmental Systems Research Institute, Redlands, CA, USA

Abstract

Since the mid-1950s, native pines in the San Bernardino Mountains (SBM) in southern California have shown symptoms of decline. Initial studies in 1963 showed that ozone (O3) generated in the upwind Los Angeles Basin was responsible for the injury and decline of sensitive trees. Ambient O3decreased significantly by the mid-1990s, resulting in decreased O3injury and improved tree growth. Increased growth of trees may also be attributed to elevated atmospheric nitrogen (N) deposition. Since most of the N deposition to mixed conifer forest stands in the SBM results from dry deposition of nitric acid vapor (HNO3) and ammonia (NH3), characterization of spatial and temporal distribution of these two pollutants has become essential. Although maximum daytime O3concentrations over last 40 years have significantly decreased (~3-fold), seasonal means have been reduced much less (~1.5-fold), with 2-week long means occasionally exceeding 100 ppb in the western part of the range. In the same area, significantly elevated concentrations of HNO3and NH3, up to 17.5 and 18.5 μg/m3as 2-week averages, respectively, have been determined. Elevated levels of O3and increased N deposition together with long-term drought predispose the SBM forests to massive bark beetle attacks making them susceptible to catastrophic fires.

Funder

U.S. Department of Agriculture

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3