Surface Enhanced Raman Spectroscopy for Molecular Identification- a Review on Surface Plasmon Resonance (SPR) and Localised Surface Plasmon Resonance (LSPR) in Optical Nanobiosensing

Author:

Bousiakou Leda G.1,Gebavi Hrvoje2ORCID,Mikac Lara2ORCID,Karapetis Stefanos3,Ivanda Mile2

Affiliation:

1. IMD Laboratories Co, R&D Section, Lefkippos Technology Park, NCSR Demokritos PO Box 60037, GR-15130 Agia Paraskeyi, Athens, Greece

2. Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia

3. Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Dept of Chemical Sciences, National Technical University of Athens, 9 Iroon Polytechniou St., GR-15780, Athens, Greece

Abstract

Surface plasmon resonance (SPR) allows for real-time, label-free optical detection of many chemical and biological substances. Having emerged in the last two decades, it is a widely used technique due to its non-invasive nature, allowing for the ultra-sensitive detection of a number of analytes. This review article discusses the principles, providing examples and illustrating the utility of SPR within the frame of plasmonic nanobiosensing, while making comparisons with its successor, namely localized surface plasmon resonance (LSPR). In particular LSPR utilizes both metal nanoparticle arrays and single nanoparticles, as compared to a continuous film of gold as used in traditional SPR. LSPR, utilizes metal nanoparticle arrays or single nanoparticles that have smaller sizes than the wavelength of the incident light, measuring small changes in the wavelength of the absorbance position, rather than the angle as in SPR. We introduce LSPR nanobiosensing by describing the initial experiments performed, shift-enhancement methods, exploitation of the short electromagnetic field decay length, and single nanoparticle sensors are as pathways to further exploit the strengths of LSPR nanobiosensing. Coupling molecular identification to LSPR spectroscopy is also explored and thus examples from surface-enhanced Raman spectroscopy are provided. The unique characteristics of LSPR nanobiosensing are emphasized and the challenges using LSPR nanobiosensors for detection of biomolecules as a biomarker are discussed.

Publisher

Croatian Chemical Society

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3