A Robust Procedure for Machine Learning Algorithms Using Gene Expression Data

Author:

Abstract

Cancer classification is one of the main objectives for analyzing big biological datasets. Machine learning algorithms (MLAs) have been extensively used to accomplish this task. Several popular MLAs are available in the literature to classify new samples into normal or cancer populations. Nevertheless, most of them often yield lower accuracies in the presence of outliers, which leads to incorrect classification of samples. Hence, in this study, we present a robust approach for the efficient and precise classification of samples using noisy GEDs. We examine the performance of the proposed procedure in a comparison of the five popular traditional MLAs (SVM, LDA, KNN, Naïve Bayes, Random forest) using both simulated and real gene expression data analysis. We also considered several rates of outliers (10%, 20%, and 50%). The results obtained from simulated data confirm that the traditional MLAs produce better results through our proposed procedure in the presence of outliers using the proposed modified datasets. The further transcriptome analysis found the significant involvement of these extra features in cancer diseases. The results indicated the performance improvement of the traditional MLAs with our proposed procedure. Hence, we propose to apply the proposed procedure instead of the traditional procedure for cancer classification.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3