Protein Fold Prediction for Protein Sequences of Low Identity Based on Evolutionary and Spatial Features Using Random Forest Algorithm

Author:

Abstract

Protein fold prediction is a milestone step towards predicting protein tertiary structure from protein sequence. It is considered one of the most researched topics in the area of Computational Biology. It has applications in the area of structural biology and medicines. Extracting sensitive features for prediction is a key step in protein fold prediction. The actionable features are extracted from keywords of sequence header and secondary structure representations of protein sequence. The keywords holding species information are used as features after verifying with uniref100 dataset using TaxId. Prominent patterns are identified experimentally based on the nature of protein structural class and protein fold. Global and native features are extracted capturing the nature of patterns experimentally. It is found that keywords based features have positive correlation with protein folds. Keywords indicating species are important for observing functional differences which help in guiding the prediction process. SCOPe 2.07 and EDD datasets are used. EDD is a benchmark dataset and SCOPe 2.07 is the latest and largest dataset holding astral protein sequences. The training set of SCOPe 2.07 is trained using 93 dimensional features vector using Random forest algorithm. The prediction results of SCOPe 2.07 test set reports the accuracy of better than 95%. The accuracy achieved on benchmark dataset EDD is better than 93%, which is best reported as per our knowledge.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3