Advanced materials for family of fuel cells: a review of polymer electrolyte membrane

Author:

Abstract

Hydrogen is an important energy carrier and a strong candidate for energy storage. It will be a useful tool for storing intermittent energy sources such as sun. Hydrogen is a versatile energy carrier that can be used to power nearly every end-use energy need. By this work, modeling and controlling of ion transport rate efficiency in proton exchange membrane (PEMFC), alkaline (AFC), direct methanol (DMFC), phosphoric acid (PAFC), direct forming acid (DFAFC), direct carbon fuel cell (DCFC) and molten carbonate fuel cells (MCFC) have been investigated and compared together. Thermodynamic equations have been investigated for those fuel cells in viewpoint of voltage output data. Effects of operating data including temperature (T), pressure (P), proton exchange membrane water content (λ), and proton exchange membrane thickness (d_mem) on the optimal performance of the irreversible fuel cells have been studied. Performance of fuel cells was analyzed via simulating polarization and power curves for a fuel cell operating at various conditions with current densities. SOFC (Solid oxide fuel cell) is usually combined with a dense electrolyte sandwiched via porous cathode and anode and SORFC (Solid oxide regenerative fuel cell) is a subgroup of RFC with solid oxide regenerative fuel cell. SORFC operates at high temperature with high efficiency and it is a suitable system for high temperature electrolysis.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proton conductive metal sulfonate frameworks;Coordination Chemistry Reviews;2021-03

2. Proton conductive covalent organic frameworks;Coordination Chemistry Reviews;2020-11

3. Pervaporation dehydration of bio-fuel (n-butanol) by dry thermal treatment membrane;Materials Research Express;2020-06-01

4. Current progress and performance improvement of Pt/C catalysts for fuel cells;Journal of Materials Chemistry A;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3