The potential role of caffeic acid in coffee as cyclooxygenase-2 (COX-2) inhibitor: in silico study

Author:

Abstract

Caffeic acid was formed from hydrolyzation chlorogenic acid caused roasting coffee. Caffeic acid has anti-inflammatory properties by in vitro and in vivo analysis. Inflammation is the body will be activator COX-2 as mediator inflammation. This study purpose to prediction, investigate and analyze caffeic acid as potential theuraphic to inhibit COX-2 by in silico study. The method of this research using in silico compound interaction models. COX-2 Protein data was taken from Protein Data Bank, caffeic acid from PubChem. Protein-ligand interaction docking using HEX 8.0.0. Although visualization and analysis of the molecular interactions of caffeic acid and COX-2 conducted by the Discovery Studio software 4.1. Caffeic acid is a potential therapist because easily absorbed and has high permeability. The results show that interacted between COX-2 and caffeic acid. The interactions showed by seven amino acid residues, which bind with the caffeic acid with hydrogen bond type. Energy binding formed from ligand and protein -210.23cal/mol. Interaction caffeic acid and COX-2 has a positive impact which potential as inhibitor COX-2.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3