Abstract
This review is about the most important matters for advancing inkjet printing with a focus on piezoelectric droplet on demand (DOD) inkjet thin-film devices. The Nano material compounds can be incorporated into a polymeric matrix and deposited by piezoelectric inkjet printing. Current problems in advanced printers are discussed as embodied in liquid filament breakup along with satellite droplet formation and reduction in droplet sizes. Various model that predicts the printability of dilute, mono disperse polymer solutions in drop-on-demand “DOD” inkjet printing have been discussed. For satellite droplets, it is exhibited which liquid filament break-up treatment can be predicted via using a combination of two pi-numbers, including the Weber number. The layer was printed over other printed layers including electrodes composed of the conductive polymers and also several polymers. It has been discussed, some polymer materials are suitable for deposition and curing at low to moderate temperatures and atmospheric pressure, allowing for the use of polymers or paper as supportive substrates for the devices, and greatly facilitating the fabrication process. Furthermore, through this review, it has been discussed scaling analyses for designing and operating of inkjet heads. Because of droplet sizes from inkjet nozzles are typically on the order of nozzle dimensions, a numerical simulation is shown for explaining how to reduce droplet sizes through employing a novel input waveform impressed on the inkjet-head liquid inflow without changing the nozzle geometries. Regardless of their any less performance, inkjet printer head as a technique for the mentioned devices presents many advantages, the most notable of which are quickly fabricating and patterning, substrate flexibilities, avoidance of material wastage via applying “DoD” technologies.
Publisher
AMG Transcend Association
Subject
Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献