Synthesis and characterization of nontoxic silver nano-particles with preferential bactericidal activity

Author:

Abstract

The massive prophylactically or remedially application of antibiotics without proper medical indications lead to severe problems of bacterial resistance. Nanoparticles (NPs) are increasingly applied to target bacterial infections as an antibiotic alternative. Green synthesis of silver nanoparticles (AgNPs), with controlled morphology, within cinnamon extract using microwave irradiation was carried out. The influence of the pH on the synthesized AgNPs was assessed. Physicochemical characterizations were followed through UV, FTIR, FESEM, HRTEM, XPS and XRD analyses. Bactericidal activity and in-vitro cytotoxicity of the achieved AgNPs were investigated. Results proved the successful synthesis of spherical AgNPs with an average size of 15 nm. The AgNPs safety was verified through cytotoxicity test against skin fibroblast normal cells. The obtained AgNPs exhibited promising bactericidal activities against the screening of several Gram+ve and Gram-ve bacteria. Therefore, it can be successfully applied in the biomedical fields for hard and soft tissue remedies.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3