Abstract
A steady, 2-D, incompressible, viscous fluid flow past a stationary solid sphere of radius 'a' has been considered. The flow of fluid occurs in 3 regions, namely fluid, porous and fluid regions. The governing equations for fluid flow in the clear and porous regions are Stokes and Brinkman equations, respectively. These governing equations are written in terms of stream function in the spherical coordinate system and solved using the similarity transformation method. The variation in flow patterns by means of streamlines has been analyzed for the obtained exact solution. The nature of the streamlines and the corresponding tangential and normal velocity profiles are observed graphically for the different values of porous parameter 'σ'. From the obtained results, it is noticed that an increase in porous parameters suppresses the fluid flow in the porous region due to less permeability; as a result, the fluid moves away from the solid sphere. It also decreases the velocity of the fluid in the porous region due to the suppression of the fluid as 'σ' increases. Hence the parabolic velocity profile is noticed near the solid sphere.
Publisher
AMG Transcend Association
Subject
Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献