Effect of Acetylation, Hydroxypropylation and Dual Acetylation-Hydroxypropylation on Physicochemical and Digestive Properties of Rice Starches with Different Amylose Content

Author:

Abstract

Four rice (Oryza sativa L.) starches widely differing in amylose content were subjected to acetylation, hydroxypropylation, and dual modification involving acetylation followed by hydroxypropylation. The starches showed a higher affinity to hydroxypropyl substitution. However, acetylation caused a significant alteration in the glycosidic matrices. The changes in physicochemical properties were most prominent in the dual-modified samples. Hydroxypropylated and dual-modified granules showed greater swelling power with structural retention. Degrees of acetylation were high in the amorphous regions of waxy and low amylose starches (0.04 and 0.05). Minor granular swelling was observed under SEM. Substitution partially dissociated side-chain superhelices, lowering crystallinity values by 3.12-4.58%, however retaining the native A-type XRD patterns. Glycosidic dissociation and enhanced hydrophilicity caused a significant lowering of gelatinization temperature (To, Tp, Tc), enthalpy (H), and cooking time as observed from DSC and RVA results. Low setback viscosity and low syneresis during freeze-thaw cycles indicated the decreased tendency of modified starch chains to realign. Dual modified starches could be cooked to thinner and more precise pastes, which are highly resilient to retrogradation. Significant increases in enzyme-resistant RS and SDS (up to 20% of each) were recorded. The dual modification method could suitably alter the properties of starches for food use.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3