A FEM Study of Molecular Transport Through a Single Nanopore in a Spherical Cell

Author:

Abstract

Electroporation has a specific application in the delivery of drugs into the cells. In addition, the challenge is to be able to deliver the drugs effectively. The key to the electroporation-based delivery method is regulated induced transmembrane voltage (ITMV). Recently, with the advent of COVID-19, there has been an increase in clinical trials on the delivery of DNA plasmids by electroporation. As a result, the substantial number of laboratory experiments are not feasible, thereby increasing the dependency on simulation-based research. Simulations of delivery of extracellular material into the cell depend upon molecular transport modeling in an electroporated cell. In this paper, molecular transport through a single nanopore is being studied theoretically. The closed-form expression of molecular transport is used in COMSOL Multiphysics simulation to obtain extracellular concentration variation as a function of time. Sinusoidal pulses with the varying magnitude of electric field (8kV/cm and 10 kV/cm) and time duration were used to understand pulse parameters' effect on molecular transport. The simulation results match the empirical result from the literature hence validate the simulation study.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A finite volume method to solve the Poisson equation with jump conditions and surface charges: Application to electroporation;Journal of Computational Physics;2024-05

2. High-Frequency Load Independent Electroporator Circuit Design for Nanosecond Pulse Generation;2023 First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI);2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3