Abstract
Cisplatin-based metal drugs have been widely used clinically as anticancer agents. However, these drugs also harm ordinary tissues because cisplatin kills cancer cells by attacking genomic DNA. Therefore, it has been shown that cisplatin-based metal drugs have some serious side effects that cannot be avoided. In order to replace the target site of genomic DNA, G-quadruplex nucleic acid is considered to be an alternative and attractive target for anticancer agents because G-quadruplex always folds into a parallel topology and is, therefore, more important than DNA. This review discussed the recent advancements in the rational design and the development of metal complexes containing anticancer drugs to interact and stabilize or cleave the G4 structure selectively. Further, we also highlighted the G4-interacting transition metal complexes, interacting modes, and their potentials to serve as anticancer drugs in the medical field. The significance of this survey lies in designing the metallodrugs from the most fundamental characteristic of electronic structural engineering to an increasingly reasonable dimension of bio-science.
Publisher
AMG Transcend Association
Subject
Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献