Disruption of Glycolysis, TCA Cycle, Respiratory Chain, Calcium and Iron Homeostasis in Doxorubicin Induced Cardiomyopathy-An In-silico Approach

Author:

Abstract

Doxorubicin is a well-known anthracycline antibiotic that is frequently used to treat a variety of malignancies. However, its clinical use is limited due to its adverse consequences, most notably cardiomyopathy. In the present work, we evaluated the molecular mechanisms behind the impairment of cardiac energetics in doxorubicin-induced cardiomyopathy. According to molecular docking, the interaction of doxorubicin with phosphofructokinase (PKF) and α-enolase is likely to negatively affect glycolysis. The interaction between doxorubicin with HMOX1 results in the accumulation of free iron. The free iron contributes to the heme-driven toxicity and the oxidizing environment that results in reactive oxygen species (ROS) production resulting from cell death. Additionally, the interaction of doxorubicin with HMOX1 impairs the availability of iron required for the Krebs cycle and ETC function. The interaction between doxorubicin and PINK1 results in a reduced membrane potential, which results in calcium accumulation. On the other hand, a lack of iron and calcium in the mitochondrial matrix results in ATP depletion, impairing the Krebs cycle activity. At the same time, the primary cause of doxorubicin-induced cardiomyopathy is cardiac energy metabolism. Thus, our work shows that doxorubicin impairs the activity of PFK, α-enolase, HMOX1, and PINK1, resulting in ATP production failure. As a result of changes in the heart energy metabolism, this ultimately leads to dilated cardiomyopathy caused by doxorubicin. Understanding the critical function of cardiac energy metabolism in doxorubicin-induced cardiomyopathy is critical for overcoming the obstacles that effectively limit the clinical effectiveness of this life-saving anti-cancer treatment.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3