Synthesis and Characterization of Methionine-Functionalized Boehmite with Enhanced Removal of Methyl Orange

Author:

Abstract

Methionine, an amino acid with thioether, carboxyl, and amino functional groups, was used to enhance the adsorption capacity of boehmite toward methyl orange (MO). An environmentally friendly synthesis method was performed to prepare the methionine-functionalized boehmite (MFB) at 70°C using water as the solvent. The MFB has prominent XRD characteristic peaks at 2θ = 14.5°, 28.6°, 38.4°, and 48.4°. The addition of functional groups from methionine was indicated by the appearance of FTIR bands at 2094, 1424, and 1220 cm-1 corresponding to carboxyl, amino, and thioether groups, respectively. The N2 isotherm curve indicates the mesoporous structure of MFB, with surface area, pore-volume, and mean pore width of 287 m2 g-1, 0.996 cm3 g-1, 13.85 nm, respectively. The kinetic adsorption data showed a good fitting with the pseudo-first-order model, where the equilibrium can be achieved within 50 min. The adsorption of MO by MFB was better correlated with the Langmuir model with a maximum adsorption capacity of 167.4075 mg g-1, which was achieved at 323 K. The thermodynamic study reveals that the adsorption of MO on MFB was an endothermic and spontaneous process.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3