Synthesis of TiO2 Photoelectrode Nanostructures for Sensing and Removing Textile Compounds Rhodamine B

Author:

Abstract

The study of the sensing and removal of Rhodamine B (RhB) textile compounds is the photoelectrocatalytic system applications development. RhB was used as a model to study the performance of TiO2 (NTiO2) photoelectrode nanostructures as environmentally friendly sensors. The synthesis of NTiO2 was carried out on the surface of the Titanium electrode by applying a potential bias of 25.0 V. The NTiO2 formed on the surface of the Titanium electrode (NTiO2/Ti) was characterized using SEM, XRD, FTIR, and Cyclic Voltammetry (CV). The formation of NTiO2 is characterized by the formation of a honeycomb-like tube on the Ti electrode surface. In addition, it is strengthened by diffractogram peaks at 2ϴ = 25 o and 48 o and IR absorption at wavenumbers of 3441.01 cm-1 (-OH groups) and 1629.85 cm-1 (Ti-O group). As for the results of sensing RhB using CV, it is known that RhB is oxidized on the surface of NTiO2/Ti with a value of Ea = 1.54 V. The oxidation process that occurs is controlled by the diffusion rate. Based on the results of photoelectrocatalytic RhB removal for 60 minutes, it was shown that using 0.10 M NaCl support electrolyte effectively increased the RhB removal rate. The decrease in RhB concentration during the photoelectrocatalytic removal process was 74.21%.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3