Carbon Dioxide Adsorption by a Zinc-Doped Nanocage: DFT-Based Computational Assessment of Gas Pollution Detection and Removal

Author:

Abstract

The high level of carbon dioxide (CO2) greenhouse gas exhaustion to nature could make it a serious pollutant with negative impacts on human and environmental health safety. In this regard, the current work was performed to run computational assessments on employing zinc (Zn)-doped nanocage (C19Zn) for adsorbing the CO2 gaseous substance to approach the detection and removal goals. Accordingly, geometries of the model systems were optimized using density functional theory (DFT) calculations to obtain the minimized energy structures besides evaluating their energy features. The obtained features approved the formation of interacting bimolecular CO2@C19Zn complex of quantum theory of atoms in molecules (QTAIM) analysis, and the evaluated strength indicated the existence of a physical O…Zn interaction for the formation of such a complex system. Moreover, the evaluated electronic molecular orbital features indicated the possibility of detection function for the investigated system. The obtained results of this work revealed that the formation of the CO2@C19Zn complex model could be supposed to conduct two functions of detection and removal of CO2 by the investigated C19Zn nanocage for approaching the issues of dealing with greenhouse pollutants.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3