Abstract
Loading of the anti-cancer drug 6-gingerol on graphene, graphene oxide, and Fe3O4 nanocarriers is investigated using Monte Carlo (MC) adsorption locator simulations in the gases phase. Molecular dynamics (MD) simulations are used in aqueous medium and neutral pH for the adsorption of 6-gingerol. In this study, the 6-gingerol loading ability of graphene oxide is studied as a function of the oxidation extent of graphene oxide (GO), and the effect of functional groups on drug loading properties is investigated. MC adsorption locator energy calculations which were done in a gaseous space, indicate that the 6-gingerol molecule prefers to be adsorbed at the less oxidized sites of the graphene oxide framework. The linear hydrophobic chain of the 6-gingerol molecule prefers to bind to the aromatic region of graphene oxide. In contrast, it has the least affinity for the Fe3O4 nanoparticle surface, which is indicated by the adsorption energies. The MD simulations were carried out in an aqueous medium under neutral pH. To determine the nature of the 6-gingerol attachment and release in the aqueous medium, radial distribution functions (RDF) were obtained from MD simulations. The RDF values suggest that the physical distance of separation depends on the oxidation extent of the graphene oxide. The MD presented in this study will help in fine-tuning nanocarrier synthetic methods for gingerol delivery applications.
Publisher
AMG Transcend Association
Subject
Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献