Comparative Analysis of Novel Iron Oxide Nanoparticles Synthesized by Different Approaches with Evaluation of Their Antibacterial Activities

Author:

Abstract

In this study, stable novel iron oxide nanoparticles (IO-NPs) were synthesized via chemical and green methods. In the chemical method, p-aminobenzoic acid (AB), diacetyl monoxime (DIA), and adenosine 5-monophosphate disodium (AD) were used as stabilized ligands, whereas the extract of Teucrium apollinis was used in the green synthesis method. The effect of these stabilized ligands on the size, stability, and antibacterial activity of IO-NPs was carried out. The synthesized IO-NPs were characterized using UV-Visible absorption spectroscopy (UV-Vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), and attenuated Fourier transform infrared (ATR-FTIR). IO-NPs offered spherical shapes with small sizes (5 nm, 6 nm, 8 nm, and 34 nm) for IO-NPs functionalized by DIA, AD, AB, and Teucrium apollinis, respectively. This study shows a relationship between the type of NPs and Pseudomonas aeruginosa growth. The IO-NP functionalized by plant extract has a higher antibacterial effect than IO-NPs chemically synthesized. Because it has more infinity toward bacteria cells than other NP, it has a high ability to penetrate the membrane of bacterial cells. The use of Teucrium apollinis extract could be an eco-friendly way to synthesize IO-NP that offers a novel and potential alternative to chemically synthesized IO-NP.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3