Implementing Chemostat Fermentation of Pichia Pastoris Producing Recombinant HBsAg to Optimize Cell Density Affected by Methanol Rate

Author:

Abstract

High cell density fed-batch fermentation is the main strategy for recombinant hepatitis B surface antigen (rHBsAg) production. In this study, we employed short-term continuous fermentation to optimize the cell density of recombinant Pichia pastoris (P. pastoris). After reaching the maximum specified broth volume of 5 L in the fed-batch fermentation process, the operation mode was altered into the continuous mode with a dilution rate of 0.009 1/h. We used various values of methanol inflow to examine its impact as a limiting nutrient on cell density. After reaching the steady-state point, the continuous fermentation was stopped. The process's performance was evaluated based on titer, yield, productivity, and ease of process control. According to the results, the optimal methanol inflow in the pilot-scale fermentation process was 39.9 ml/h as the cell density increased from 363 g/l wet cell weight (WCW) in the fed-batch stage to 450 g/l WCW. We could successfully scale up the fermentation process with the biomass concentration of 450 g/l without having any major issues such as excessive heat dissipation or insufficient oxygen supply. This approach is a simple method for enhancing rHBsAg production efficiency in P. pastoris without requiring any new and complex facility.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3