Abstract
Proteins are macromolecules that enable life. Protein function is due to its three-dimensional structure and shape. It is challenging to understand how a linear sequence of amino acid residues folds into a three-dimensional structure. Machine learning-based methods may help significantly in reducing the gap present between known protein sequence and structure. Identifying protein folds from a sequence can help predict protein tertiary structure, determine protein function, and give insights into protein-protein interactions. This work focuses on the following aspects. The kind of features such as sequential, structural, functional, and evolutionary extracted for representing protein sequence and different methods of extracting these features. This work also includes details of machine learning algorithms used with respective settings and protein fold recognition structures. Detailed performance comparison of well-known works is also given.
Publisher
AMG Transcend Association
Subject
Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献