Formulation Development and Optimization of Phase-Transition W/O Microemulsion In Situ Gelling System for Ocular Delivery of Timolol Maleate in the Treatment of Glaucoma

Author:

Abstract

The present investigation is aimed to prepare and evaluate the micro emulsion-based phase transition ocular system for delivery of Timolol maleate in the treatment of glaucoma. Timolol maleate is used in the first line of treatment in open-angle glaucoma, belonging to BCS class-I having good solubility and permeability. The rapid precorneal elimination of conventional formulation containing class I drugs exhibits poor therapeutic effect and bioavailability. So, microemulsion (ME) based phase transition systems were formulated and characterized. ME based phase transition system was formulated using Ethyl oleate as oil and CremophorEL as a surfactant, Span 20 as Co-surfactant, and Sorbic acid as a preservative. These systems undergo a phase transition from water-in-oil (w/o) ME to liquid crystalline (LC) state and to coarse emulsion (EM) with a change in viscosity depending on dilution with tear fluid & water content. Prepared microemulsions were characterized for average globule size, zeta potential, pH, conductance, in-vitro gelling capacity. The optimized formulation was selected based on desirable attributes and was further characterized and compared with marketed ophthalmic gel-forming marketed solution of Timolol maleate (TIMOPTIC-XE®). All the results of the characterization were satisfactory. The optimized water-in-oil (w/o) microemulsion showed droplet size 23.47 nm, the zeta potential of 0.253mV, pH of 7.2, the conductance of 0.25mS, and drug content of 99.64%. The phase transition w/o ME provides the fluidity for installation with its viscosity being increased due to phase transition after application increasing ocular retention while retaining the therapeutic efficiency. The in- vitro drug release and IOP reduction with optimized formulation were found comparable and less fluctuating compared to marketed formulation. Optimized formulation was found stable during the accelerated stability study. The developed phase transition w/o ME formulation would be able to offer benefits, such as increased residence time, prolonged drug release, reduction in dosing frequency, and thereby it will improve patient compliance.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3