Abstract
Transcriptome refers to all RNA particles occur inside one cell or inside numerous cells in one organ. Coronaviruses are a family of correlated viruses that induce viral infection. In humans, coronaviruses induce respiratory viral infections that may be mild or dangerous. The coronavirus shape is large circular elements that have round tip outbreaks - the virus diameter particles=120 nm. The RNA viral genome occurs in coronavirus. The coronavirus genome size = 27-34 kilobases, and this size is the largest RNA genome size. The Life cycle of coronavirus includes viral entry, replication, and release. Coronavirus transmission was done through the connection of its protein with host cell receptors in a specific process. There are 4 types of coronavirus genus: (1) Alphacoronavirus, (2) Betacoronavirus, (3) Gammacoronavirus, and (4) Deltacoronavirus. Viral replication, immune evasion, and virion biogenesis correlated with host cell transformation mechanism. Viral molecular mechanism hijacks the host cell protein production mechanism. There is an important host factor (CPSF6) that connects with nuclear protein (NP1). The CPSF6 increases the nuclear production of NP1 in the same time, CPSF6 possesses an important role in the progress of capsid mRNAs inside the nucleus. In a viral infection, there is an increase in mRNA, myeloid differentiation 2-related lipid recognition protein (ML), and Niemann Pick-type C1 (NPC1) genes. Coronavirus is capable of replicating in in vitro study and causes lower transcriptomic variations before 12 h after viral infection. As infection progress, coronavirus causes a significant dysregulation of the host transcriptome greater than the SARS virus. In conclusion, future transcriptome studies are the basis for detecting coronavirus in the human host and for developing a specific preventive and therapeutic method for the virus.
Publisher
AMG Transcend Association
Subject
Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology