Functionalization of Doped ZnO through Solution Route Synthesis: A study Using Spectroscopy & Density of States

Author:

Abstract

ZnO is one of the widely studied materials for multidimensional applications, viz. semiconductor material, catalysts, solid-state devices, etc. The primary functionalization is carried out by doping the required element (s) within the ZnO matrix, which can exist in either zinc blend or the wurtzite form. The present research reports synthesis of ZnO doped by Cr, Y, and Eu at two dopant concentrations. The synthesis technique is optimized using dual fuels during solution auto combustion synthesis. Detailed analysis of X-ray diffraction study reveals a comparative analysis of the peak area and FWHM magnitude. The influence of the doping element on the ZnO is studied in terms of UV and photoluminescence spectra. The highest bandgap of 3.08 eV is reported with Eu as the dopant within ZnO compared to Y, which shows lower bandgap energy of 2.44 eV. The density of states study of ZnO is found to be continuous with a significant nodal region within -3.4 to -2.4 eV. However, in the doped systems, irrespective of the dopant, nodal regions are more with specific band regions in the ZnO-Y/ZnO-Eu system. Irrespective of dopant type, doping within ZnO significantly influences the states in the conduction band.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3