Multifunction Finishing of Cellulose Based Fabrics via 3-Chloro-2-Hydroxypropyl Trimethyl Ammonium Chloride (Quat-188) and Silver Nanoparticles (AgNPs) to Improve its Dyeability and Antibacterial

Author:

Abstract

The main goal of this study is to modify cotton as cellulose-based fabrics through cationization to improve its dyeing with acid dyes and its antibacterial. Quat-188 was applied to cotton to prepare cationized cotton, overcoming the negative charges between cotton and acid dyes during the dyeing process without using any electrolyte via the pad-dry-cure method. Then the cationized cotton fabrics were treated with the prepared silver nanoparticles to improve their antibacterial properties. The untreated and treated cotton fabrics were dyed with two acid dyes Acid Brilliant Blue PB 100% (acid blue 25; AB25) and Acid Metanil Yellow MT 100% (acid yellow 36) at concentrations of 2%, 4%, and 6% of by exhaust method. Colour strength, color, and washing fastness of untreated and treated cotton fabrics were studied. Antibacterial properties of fabrics were also evaluated against S. aureus and E. coli by using the disk diffusion method. Dyeing properties showed that the treated cotton fabrics significantly improved color strength and fastness properties (light, washing, perspiration, and rubbing). Also, the antibacterial properties of treated cotton fabrics showed antibacterial activity towards tested bacteria. This study reveals that modified cotton fabrics via cationization with Quat-188 and AgNPs have multifunctional properties from their ability for acid dyes and their higher antibacterial activity towards Gram-positive and Gram-negative bacteria that is can be used in many applications.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3