Application of DNA Shuffling as a Tool for Hydrolase Activity Improvement of Pseudomonas Strain

Author:

Abstract

Biotechnology is considered one of the most influential technologies in various areas of human life, including health, economics, and the environment. Protein engineering is one of the major biotechnology tools in the field of modification and advancement of biocatalysts capabilities. Among the most effective protein engineering methods, in particular, to improve the industrial strain capabilities, is the shuffling genome method. This study aimed to follow knowledge and biocatalysts engineering techniques based on DNA shuffling methods. In the first step, two procedures were followed (DES method and compatibility according to the concentration gradient of Diazinon) to obtain mutant strains. Acquired mutant strains from both methods were resistant to high concentrations of poison up to 3000 mg/L. The activity of these strains also demonstrated their elevated activity compared to parent samples. The highest activity was related to four strains IR1.G1, IR1.D8, IR1.D4, and IR1.D5, which were 0.234 U/ml, 0.1 U/ml, 0.098 U/ml, and 0.066 U/ml, respectively. The improved strain was obtained via the concentration gradient of the diazinon method (IRL1.G1 strain) in comparison with IRL1.D8 strain (owning highest activity through DES method) possesses excessive activity in 3000 mg/L concentration of Diazinon. The evaluated results of first-generation genome shuffling of strains (the first round of protoplast fusion) also indicated that those shuffled strains with the ability to grow in the vicinity of the toxin (3000 mg/L concentration of Diazinon) showed better activity than obtained mutated strains by both methods (concentration gradient of the toxin and the DES method). In the final stage, the best results were related to IRL1.F2, IRL1.F3, and IRL1.F1 shuffled strains with 0.541 mg/L, 0.523 mg/L, and 0.509 mg/L, respectively. The highest activity belonged to the IRL1.F2 genome shuffled strain (first round of protoplast fusion). This strain could grow in a high concentration of toxin, and also, the activity was increased 30, 3.6, and 2.3 times in comparison with the parent strain (IRL1), IRL.D8 mutant, and IRL1.G1, respectively.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3