Abstract
Superparamagnetic nanoparticles contain unique magnetic properties that differ from the bulk materials and are able to function at a cellular level due to their size, shape, and surface characteristics. These features make them attractive candidates for drug delivery systems, thermal mediators in hyperthermia, and magnetic resonance imaging (MRI) contrast agents. This review provides an up-to-date overview of the application of iron oxide nanoparticles in cancer diagnosis, drug delivery, treatment, and safety concerns related to these materials are considered, as well. Furthermore, the general principles and challenges of the magnetic behavior of nanoparticles in the field of oncology are also discussed. Firstly, the basic requirements for magnetic nanoparticles for biomedical applications are outlined. The close link between structure, shape, size, and magnetic characterization are described, which is considered essential for non-invasive imaging modality, innovative magnetic-driven nanocarriers, and treatment based on the overheating. In conclusion, investigation of the toxicity profile of novel nanoparticles is provided, as well.
In the current review, the attention is focused on the role of magnetic nanoparticles, especially iron oxide nanoparticles in some bioapplications such as magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, and magnetic hyperthermia systems.
Publisher
AMG Transcend Association
Subject
Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献