Effect of Ce-Mn Codoping on the Structural, Morphological and Electrical Properties of the BaTiO3 Based Ceramics

Author:

Abstract

Undoped, Cerium (Ce) doped, Manganese (Mn) doped and Ce-Mn co-doped Barium Titanate (BaTiO3) with the general formula Ba1-xCexMnyTi1-yO3 (where x = 0.00, 0.01, 0.02, 0.03, y = 0.00; x = 0.00, y =0.01, 0.02, 0.03; and x = y = 0.01, 0.02,0.03) were synthesized by solid-state reaction method and sintered at 1200 C for 4 hr with an aim to study their structural and electrical properties. The grain size of the samples has been estimated using the Scanning Electron Microscopy (SEM). The X-ray Diffraction (XRD) analysis indicates that the structure of the Ce-doped and Ce-Mn co-doped BaTiO3 is cubic. However, the undoped BaTiO3 and Mn-doped BaTiO3 confirmed the tetragonal-cubic mixed phases. With the change of doping concentrations, the positions of different peaks shifted slightly. The lattice parameter varied irregularly with increasing doping concentration because of Mn's changeable valency. EDX spectra confirmed the presence of Ba, Ti, Ce, and Mn contents in the co-doped samples with stoichiometric ratio. Crystallinity is observed to be clearly increased when Ce-Mn is co-doped in BaTiO3. J-V characteristic curves indicate transition from conducting to semiconducting nature for the doped and co-doped samples with the increase in temperature. The dielectric constant of the samples increases up to 4500 with the doping concentration. The higher values of dielectric constant are observed for the 2% Mn-doped and 1% Ce-Mn co-doped samples compared to the other undoped samples. For the undoped and Mn-doped samples, constant dielectric values increase with temperature but decrease for the Ce-doped and Ce-Mn co-doped samples. It is inferred that co-doping of BaTiO3 with Ce and Mn would be beneficial and economical for its applications.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3